

Waltham St. Lawrence Primary School Calculation Policy

AIMS OF THE POLICY

- To ensure consistency and progression in our approach to calculation and enable a smooth transition between year groups and key stages.
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations.
- To ensure that children can use these methods accurately with confidence and understanding.
- To ensure pupils understand important concepts and make connections within mathematics.
- To ensure pupils show high levels of fluency in performing written and mental calculations.
- To ensure that pupils are competent in fluency, reasoning and problem solving and can make informed and appropriate choices about the methods they wish to use (mental or written) to solve mathematical problems efficiently and effectively.

The policy is set out in subjects, addition, subtraction, multiplication and division. Within each specific area there is a progression of skills, knowledge and layout for written methods that has been agreed by all staff. The calculation strategies which will be used will reflect this ideology - moving from concrete to pictorial and then abstract recording leading to more formal written methods. Mental methods and strategies will work in partnership with these methods.

It has been agreed by all staff that a variety of mental calculation methods will be taught and that recall of facts will be taught in school and tested regularly. The progression of mental methods and expectations will comply with the new National Curriculum statements 2014.

$\begin{aligned} & \text { ᄃ } \\ & \text { B } \\ & \frac{1}{0} \\ & \frac{0}{1} \end{aligned}$	Year	Mental calculation	Written Calculation	Minimum requirements for ALL children
	Y1	Number bonds ('story of' 5, 6, 7, 8, 9 and 10) Count on in ones from a given 2-digit number Add two single-digit numbers Add three single-digit numbers spotting doubles or pairs to 10 Count on in tens from any given 2-digit number Add 10 to any given 2-digit number Use number facts to add single-digit numbers to two-digit numbers, e.g. use $4+3$ to work out $24+3,34+3$... Add by putting the larger number first		Pairs with a total of 10 Counting in ones Counting in tens Count on 1 from any given 2-digit number
	Y2	Number bonds - knowing all the pairs of numbers which make all the numbers to 12 , and pairs with a total of 20 Count on in ones and tens from any given 2-digit number Add two or three single-digit numbers Add a single-digit number to any 2-digit number using number facts, including bridging multiples of 10. (E.g. $45+4,38+7$) Add 10 and small multiples of 10 to any given 2-digit number Add any pair of 2-digit numbers	To experience: Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers Begin to use compact column addition to add numbers with three digits. n.b. The are no statutory requirements for written calculations to be carried out at Key Stage 1	Know pairs of numbers which make each total up to 10 Add two single digit numbers Add a single-digit number to a 2-digit number by counting on in ones Add 10 and small multiples of 10 to a 2-digit number by counting on in tens
	Y3	Know pairs with each total to 20 Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10s and 1s or by using partitioning Add multiples and near multiples of 10 and 100 Perform place value additions without a struggle. (E.g. $300+8$ $+50=358)$ Use place value and number facts to add a 1-digit or 2-digit number to a 3 -digit number. (E.g. $104+56$ is 160 since $104+50=154$ and $6+4=10$ and $676+8$ is 684 since $8=4+4$ and $76+4+4=84$) Add pairs of 'friendly' 3-digit numbers, e.g. $320+450$ Begin to add amounts of money using partitioning.	Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers Begin to use compact column addition to add numbers with three digits. Begin to add like fractions. (E.g. ${ }^{3} / 8+$ $1 / 8+1 / 8$) Recognise fractions that add to 1. (E.g. $1 / 4+3 / 4$ or $^{3} / 5+2 / 5$)	Know pairs of numbers which make each total up to 10, and which total 20 Add two 2-digit numbers by counting on in tens and ones (E.g. 56 +35 is $56+30$ and then add the 5) Understand simple place value additions: $200+40+5=245$ Use place value to add multiples of 10 or 100

\cdots	Year	Mental calculation	Written Calculation	Minimum requirements for ALL children
	Y4	Add any two 2-digit numbers by partitioning or counting on Know by heart/quickly derive number bonds to 100 and to $£ 1$ Add to the next hundred, pound and whole number. (E.g. 234 $+66=300,3.4+0.6=4)$ Perform place value additions without a struggle. (E.g. $300+8$ $+50+4000=4358)$ Add multiples and near multiples of 10,100 and 1000. Add $£ 1,10$ p, 1 p to amounts of money Use place value and number facts to add 1-, 2-, 3-and 4-digit numbers where a mental calculation is appropriate'. (E.g. 4004 +156 by knowing that $6+4=10$ and that 4004+150=4154 so total is 4160)	Column addition for 3-digit and 4-digit numbers Add like fractions, e.g. $3 / 5+4 / 5=7 / 5=1$ $2 / 5$. Be confident with fractions that add to 1 and fraction complements to 1. (E.g. $2 / 3+?=1)$	Add any 2-digit numbers by partitioning or counting on Number bonds to 20 Know pairs of multiples of 10 with a total of 100 Add friendly larger numbers using knowledge of place value and number facts Use expanded column addition to add 3-digit numbers
	Y5	Know numbers bonds to 1 and to the next whole number Add to the next 10 from a decimal number, e.g. $13 \cdot 6+6 \cdot 4=20$ Add numbers with two significant digits only, using mental strategies. (E.g. $3.4+4.8$ or $23,000+47,000$) Add one or two-digit multiples of 10, 100, 1000, 10,000 and 100,000. (E.g. $8000+7000$ or $600,000+700,000$) Add near multiples of $10,100,1000,10,000$ and 100,000 to other numbers. (E.g. 82,472 $+30,004$) Add decimal numbers which are near multiples of 1 or 10 , including money. (E.g. $6 \cdot 34+1.99$ or $£ 34.59+£ 19.95$) Use place value and number facts to add two or more friendly numbers including money and decimals. (E.g. $3+8+6+4+7$, $0.6+0.7+0.4$, or $2,056+44$)	Use column addition to add two or three whole numbers with up to 5 digits Use column addition to add any pair of two-place decimal numbers including amounts of money. Begin to add related fractions using equivalences. (E.g. $1 / 2+1 / 6=3 / 6+1 / 6$) Choose the most efficient method in any given situation	Add numbers with only 2-digits which are not zeros, e.g. $3.4+5.8$ Derive swiftly and without any difficulty number bonds to 100 Add friendly large numbers using knowledge of place value and number facts Use expanded column addition to add pairs of 4- and 5-digit numbers
	Y6	Know by heart number bonds to 100 and use these to derive related facts. (E.g. $3.46+0.54=4$) Derive quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation do-able 'in our heads'. (E.g. 34,000 + 8000.) Add multiples of powers of ten and near multiples of the same. (E.g. $6345+199$.) Add negative numbers in a context such as temperature where the numbers make sense. Add two 1-place decimal numbers or two 2-place decimal numbers less than 1 (E.g. $4.5+6.3$ or $0.74+0.33$) Add positive numbers to negative numbers, e.g. calculate a rise in temperature, or continue a sequence beginning with a negative number	Use column addition to add numbers with up to 5 digits. Use column addition to add decimal numbers with up to 3-digits Add mixed numbers and fractions with different denominators.	Derive swiftly and without difficulty, number bonds to 100 Use place value and number facts to add friendly large or decimal numbers, e.g. $3.4+6.6$ or $26,000+5,400$ Use column addition to add numbers with up to 4-digits. Use column addition to add pairs of two-place decimal numbers.

	Year 1	Year 2
	Using Place value Count in ones / Counting in tens, e.g. knowing $45+1$ or $45+10$ without counting on in ones $23+10$ Counting on Count on in ones, e.g. $11+2=\quad 7+4=$ Count on in tens, e.g. $45+20$ as $45,55,65$ Using number facts 'Story' of $4,5,6,7,8$ and 9, e.g. $7=7+0$ or $6+1$ or $5+2$ or $4+3$ Number bonds to 10 , e.g. $5+5,6+4,7+3,8+2,9+1,10+0$ Patterns using known facts, e.g. $4+3=7$ so we know $24+3,44+3,74+3$, etc.	Using Place value Know 1 more or 10 more than any number, e.g. 1 more than 67 or 10 more than 85 Partitioning, e.g. $55+37$ as $50+30$ and $5+7$ finally combining the two totals: $80+12$ Counting on $80+12=92$ Add ten and multiples of ten, e.g. $76+20$ as $76,86,96$ or in one hop $76+20$ Add two 2-digit numbers by counting on in tens then in ones, e.g. $55+37$ as 55 add 30 (85) add 7 (92) Add near multiples, e.g. $46+19$ or $63+21$ Using number facts Know pairs of numbers which make the numbers up to and including 10 , e.g. $8=4 \& 4,3 \& 5,2 \& 6,1 \& 7$ and $10=5 \& 5,4 \& 6,3 \& 7,2 \& 8,1 \& 9,0 \& 10$ Patterns of known facts, e.g. $6+3=9$, so we know $36+3=39,66+3=69$, $53+6=59$ Bridging ten, e.g. $57+5$ as 57 add 3 then add 2 more Adding three or more single-digit numbers, spotting bonds to 10 or doubles, e.g. $6+7+4+2$ as $10+7+2$

	Year 3	Year 4
	Using Place value Count in hundreds, e.g. knowing $475+200$ as $475,575,675$ Add multiples of 10,100 and $£ 1$, e.g. $746+200$ or $746+40$ or $£ 6.34+£ 5$ as $£ 6$ $+£ 5$ and $34 p$ Partitioning, e.g. $68+74$ as $60+70$ and $8+4$ and combine the totals: $130+12$ $=142$ or $£ 8.50+£ 3.70$ as $£ 8+£ 3$ and 50 p +70 p and combine: $£ 11+£ 1.20$ Counting on Add two 2-digit numbers by adding the multiple of ten then the ones, e.g. $67+55$ as 67 add 50 (117) add 5 (122) Add near multiples of 10 and 100, e.g. $67+39$ or $364+199$ Count on from 3-digit nos, e.g. $247+34$ as $247+30$ (277) then $277+4=281$ Using number facts Number bonds to 100 , e.g. $35+65,46+54,73+27$, etc. Add to next ten and next hundred, e.g. $176+4=180,435+65=500$, etc.	Using Place value Count in thousands, e.g. knowing $475+200$ as $475,575,675$ Partitioning, e.g. $746+203$ as $700+200$ and $46+3$ or $134+707$ as $130+700$ and $4+7$ Counting on Add two 2-digit numbers by adding the multiple of ten then the ones, e.g. $67+55$ as 67 add 50 (117) add 5 (122) Add near multiples of 10,100 and 1000, e.g. $467+199$ or $3462+2999$ Count on to add 3-digit numbers and money, e.g. $463+124$ as $463+100$ $(563)+20(583)+4=587 \text { or } £ 4.67+£ 5.30 \text { as } £ 9.67 \text { add } 30 \text { p }$ Using number facts Number bonds to 100 and to next multiple of 100, e.g. $463+37,1353+47$ Number bonds to $£ 1$ and to the next whole pound, e.g. $£ 3.45+55 p$ Add to next whole number, e.g. $4.6+0.4,7.2+0.8$
	Expanded column addition with 'carrying' Compact column addition with two or more 3-digit numbers or towers of 2-digit numbers Compact column addition with 3-digit and 4-digit numbers Recognise fractions which add to 1 , e.g. $1 / 4+3 / 4 \operatorname{or}^{2} / 5+3 / 5$	Compact column addition with larger numbers. 5347 2286 Use expanded and compact column addition to add amounts of money. 1495 9128 121 Add like fractions, e.g. $3 / 8+1 / 8+1 / 8$

	Year 5	Year 6
	Compact column addition to add Pairs of 5-digit numbers Continue to use column addition to add towers of several larger numbers. Use compact addition to add decimal numbers with up to two places Adding fractions with related denominators, e.g. $1 / 4+3 / 8=5 / 8$	Compact column addition for adding several large numbers and decimal numbers with up to two places $\begin{array}{r} £ 14.64 \\ +\quad £ 28.78 \\ £ 12.26 \\ \hline £ 55.68 \\ \hline 111 \end{array}$ Compact column addition with money Add fractions with unlike denominators, e.g. $3 / 4+1 / 3=11 / 12$ or $13 / 12$ $21 / 4+11 / 3=37 / 12$

	Year 5	Year 6
	Using Place value Count in $0.1 \mathrm{~s}, 0.01 \mathrm{~s}$, e.g. knowing what 0.1 more than 0.51 is 100 s Partitioning, e.g. $2.4+5.8$ as $2+5$ and $0.4+0.8$ and combine the totals: $7+1.2=8.2$ Counting on Add two decimal numbers by adding the ones then the tenths/hundredths, e.g. $5.72+3.05$ as 5.72 add 3 (8.72) then add 0.05 (8.77) Add near multiples of 1 , e.g. $6.34+0.99$ or $5.63+0.9$ Count on from large numbers, e.g. $6834+3005$ as $9834+5$ Using number facts Number bonds to 1 and to the next whole number, e.g. $0.4+0.6$ or $5.7+0.3$ Add to next ten from a decimal number, e.g. $7.8+2.2=10$	Using Place value Count in $0.1 \mathrm{~s}, 0.01 \mathrm{~s}, 0.001 \mathrm{~s}$, e.g. knowing what 0.001 more than 6.725 is Partitioning, e.g. $9.54+3.25$ as $9+3$ and $0.5+0.2$ and $0.04+0.05$ to get 12.79 Counting on Add two decimal numbers by adding the ones then the tenths/hundredths or thousandths, e.g. $6.314+3.006$ as 6.314 add 3 (9.314) then add 0.006 (9.32) Add near multiples of 1, e.g. $6.345+0.999$ or $5.673+0.9$ Count on from large numbers, e.g. 16,375 $+12,003$ Using number facts Number bonds to 1 and to next multiple of 1, e.g. $0.63+0.37$ or $2.355+0.645$ Add to next ten, e.g. $4.62+0.38$

	Year	Mental calculation	Written Calculation	Minimum requirements for ALL children
	Y1	Number bonds ('story of' 5, 6, 7, 8, 9 and 10) Count back in ones from a given 2-digit number Subtract one single-digit number from another Count back in tens from any given 2-digit number Subtract 10 from any given 2-digit number Use number facts to subtract single-digit numbers from twodigit numbers, e.g. use $7-2$ to work out $27-2,37-2 \ldots$		Pairs with a total of 10 Counting back in ones from 20 to 0 Counting back in tens from 100 to 0 Count back 1 from any given 2-digit number
	Y2	Number bonds - knowing all the pairs of numbers which make all the numbers to 12 Count back in ones and tens from any given 2-digit number Subtract a single-digit number from any 2-digit number using number facts, including bridging multiples of 10 , e.g. $56-3$, 53-5. Subtract 10 and small multiples of 10 from any given 2-digit number Subtract any pair of 2-digit numbers by counting back in tens and ones or by counting up.	To experience: Use counting up as an informal written strategy for subtracting pairs of threedigit numbers, e.g. $423-357$ is n.b. The are no statutory requirements for written calculations to be carried out at Key Stage 1	Know pairs of numbers which make each total up to 10 Subtract a single-digit number from a 2-digit number by counting back in ones Subtract 10 and small multiples of 10 from a 2-digit number by counting back in tens
	Y3	Know pairs with each total to 20 Subtract any two 2-digit numbers Perform place value subtractions without a struggle. (E.g. 536 $-30=506, \text { etc.) }$ Subtract 2-digit numbers from numbers >100 by counting up. (E.g. 143-76 is done by starting at 76, add 4 (80) then add 20 (100) then add 43 making the difference a total of 67) Subtract multiples and near multiples of 10 and 100 Subtract, when appropriate, by counting back or taking away, using place value and number facts. Find change from $£ 1, £ 5$ and $£ 10$.	Use counting up as an informal written strategy for subtracting pairs of threedigit numbers, e.g. 423-357 is Begin to subtract like fractions. (E.g. $7 / 8-3 / 8$)	Know pairs of numbers which make each total up to 10, and which total 20 Count up to subtract 2-digit numbers: $72-47$ is Subtract multiples of 5 from 100 by counting up Subtract multiples of 10 and 100

Subtract any two 2-digit numbers
Know by heart/quickly derive number bonds to 100
Perform place value subtractions without a struggle. (E.g. $4736-706=4030$, etc.)
Subtract multiples and near multiples of 10,100 and 100 Subtract by counting up. (E.g. 503-368 is done by adding: $368+2+30+100+3$ so we added 135)
Subtract, when appropriate, by counting back or taking away, using place value and number facts.
Subtract $£ 1,10$ p, 1 p from amounts of money Find change from $£ 10, £ 20$ and $£ 50$.

Y5 \quad Subtract numbers with two significant digits only, using mental strategies. (E.g. 6.2-4.5 or 72,000-47,000) Subtract one or two-digit multiples of 100, 1000, 10,000 and 100,000. (E.g. 8000-3000 or 600,000-200,000) Subtract one or two digit near multiples of 100, 1000, 10,000 and 100,000 from other numbers. (E.g. 82,472-30,004) Subtract decimal numbers which are near multiples of 1 or 10, including money. (E.g. 6.34-1.99 or $£ 34.59-£ 19.95$) Use counting up subtraction, with knowledge of number bonds to $10 / 100$ or $£ 1$, as a strategy to perform mental subtraction. (E.g. £10-£3.45 or 1000-782]
Recognise fraction complements to 1 and to the next whole number. (E.g. $12 / 5+3 / 5=2$) $4-5$
Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition. (E.g. 1000 654 as $46+300$ in our heads
Use number bonds to 1 and 10 to perform mental subtraction of any pair of one-place or two-place decimal numbers using complementary addition and including money. (E.g. 10-3.65 as $0.35+6, £ 50-£ 34.29$ as $71 p+£ 15$)
Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to two places. (E.g. 467,900-3,005 or 4.63-1.02)
Subtract multiples of powers of ten and near multiples of the same.
Subtract negative numbers in a context such as temperature where the numbers make sense.

Use expanded column subtraction for 3-digit and 4-digit numbers Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100
E.g. $2002-1865$ is
$\overbrace{1865}^{\overbrace{1870}^{+5}+30}=137$

Subtract like fractions, e.g. $1 / 4+1 / 8=3 / 8$ Use fractions that add to 1 to find fraction complements to 1 , e.g. $1-2 / 3$ $=1 / 3$ Use compact or expanded column subtraction to subtract numbers with up to 5 digits.
Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000. Use complementary addition for subtractions of decimals with up to two places incl. amounts of money Begin to subtract related fractions using equivalences. (E.g. $1 / 2-1 / 6=2 / 6$) Choose the most efficient method in any given situation
Use column subtraction to subtract numbers with up to 6 digits. Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 or 10,000.
Use complementary addition for subtractions of decimal numbers with up to three places including money. Subtract mixed numbers and fractions with different denominators.

Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100. (E.g. 512 287 is done by

Derive swiftly and without difficulty number bonds to 100 Use counting up with confidence to solve most subtractions, including finding complements to multiples of 1000. (E.g. $3000-$ 2387 is done by

Use number bonds to 100 to perform mental subtraction of numbers up to 1000 by complementary addition. (E.g. 1000-654 as $46+300$ in our heads.)
Use complementary addition for subtraction of integers up to 10,000 . E.g. $2504-1878$ as

Use complementary addition for subtractions of one-place decimal numbers and amounts of money. (E.g. $£ 7.30-£ 3.55$ as

	Year 1	Year 2
	Using Place value Count back in ones / Count back in tens, e.g. knowing 53-1 or 53-10 without counting back in ones $33-10$ Taking away Count back in ones, e.g. $11-3=15-4=$ Count back in tens, e.g. 53-20 as 53, 43, 33 Using number facts 'Story' of 4, 5, 6, 7, 8 and 9, e.g. $7-1=6,7-2=5,7-3=4$, etc. Number bonds to 10, e.g. $10-1=9,10-2=8,10-3=7$, etc. Patterns using known facts, e.g. $7-3=4$ so we know $27-3=, 47-3=$, $77-4=$, etc.	Taking away Subtract ten and multiples of ten, e.g. 76-20 as 76, 66, 56 or in one hop $76-20=56$ Subtract two 2-digit numbers by counting back in tens then in ones, e.g. $67-33$ as 67 subtract 30 (37) then count back 3 (34) Subtracting near multiples, e.g. 74-21 or 57-19 Using number facts Know pairs of numbers which make the numbers up to and including 10 , e.g. $10-6=4,8-3=5,5-2=3$, etc. Patterns of known facts, e.g. $9-6=3$, so we know $39-6=33,69-6=63$, $89-6=83$ Bridge ten, e.g. 52-6 as 52 subtract 2 then subtract 4 more Counting up Find a difference between two numbers on a line, e.g. 51-47

	Year 3	Year 4
	Counting up Find a difference between two numbers by counting up from the smaller to the larger, e.g. 121-87 Using number facts Number bonds to 100 , e.g. $100-35=65,100-48=52$, etc.	Counting up Find a difference between two numbers by counting up from the smaller to the larger, e.g. 506-387 Using number facts Number bonds to 10,100 and derived facts, e.g. $100-76=24,1.0-0.6=0.4$ Number bonds to $£ 1$ and $£ 10$, e.g. $£ 1.00-86 p=14$ p or $£ 10-£ 3.40=£ 6.60$
	Develop counting up subtraction Use counting up subtraction to find change from $£ 1$ and $£ 10$ Recognise complements of any fraction to 1 , e.g. $1-1 / 4=3 / 4$ or $1-2 / 3=1 / 3$	Use counting up subtraction to find change from $£ 10, £ 20, £ 50$ and $£ 100$ Subtract like fractions, e.g. $3 / 8-1 / 8=2 / 8$

	Year 5	Year 6
	Taking away Use place value to subtract decimals, e.g. 4.58-0.08 or 6.26-0.2, etc. Take away multiples of powers of 10, e.g. 15,672-300 or 4.82-2 or $2.71-0.5$ or $4.68-0.02$ Partition or count back, e.g. 3964-1051 or 5.72-2.01 Subtract near multiples, e.g. 86,456-9999 or 3.58-1.99 Counting up Find a difference between two numbers by counting up from the smaller to the larger, e.g. 2009-869 Find change using shopkeepers' addition, e.g. buy toy for $£ 6.89$ using $£ 10$ Using number facts Derived facts from number bonds to 10 and 100, e.g. $2-0.45$ using $45+55=$ 100 or $3.00-0.86$ using $86+14=100$ \qquad Number bonds to $£ 1, £ 10$ and $£ 100$, e.g. $£ 4.00-£ 3.86 p=14 p$ or $£ 100-£ 66$ using $66+34=£ 100$	Taking away Use place value to subtract decimals, e.g. $7.782-0.08$ or $16.263-0.2$, etc. Take away multiples of powers of 10, e.g. 132,956-400 or 686,109-40,000 or 7.823-0.5 Partition or count back, e.g. 3964-1051 or 5.72-2.01 Subtract near multiples, e.g. 360,078-99,998 or 12.831-0.99 Counting up Count up to subtract numbers from multiples of $10,100,1000,10,000$ Find a difference between two decimal numbers by counting up from the smaller to the larger, e.g. 1.2-0.87 Using number facts Derived facts from number bonds to 10 and 100, e.g. $0.1-0.075$ using $75+25=100$ or $5-0.65$ using $65+35=100$ Number bonds to $£ 1, £ 10$ and $£ 100$, e.g. $£ 7.00-£ 4.37$ or $£ 100-£ 66.20$ using $20 p+80 p=£ 1$ and $£ 67+£ 33=£ 100$.

	Year 5
	Compact column subtraction for numbers with up to 5 digits
	$\begin{array}{lllll}0 & 15 & 13 & 13 & 14\end{array}$
	$\times 8$ \& 8
	- 8 5 1 5
	7808
	Continue to use counting up subtraction for subtractions involving money, including finding change or, e.g. $£ 50- \pm 28.76$
	$24 p$ E1 t20
	E28.76 E29 E30 ESO
	Use counting up subtraction to subtract decimal numbers, e.g. 4.2-1.74 .06 . 2 $2 \cdot 2$
	Subtracting fractions with like denominators, e.g. $11 / \mathrm{d}-3 / 8$ as $1^{2} / 8-3 / 8$ or $10 / 8-3 / 8=7 / 8$

Year 6

Compact column subtraction for large numbers

2	14		7	15
78	4	6	8	8
1	6	4	5	8
1	8	2	2	7

Use counting up subtraction when dealing with money, e.g. $£ 100-£ 78.56$ or £45.23-£27.57

Use counting up subtraction to subtract decimal numbers, e.g. 13.1-2.37

$$
\frac{0.13}{2.37150 .50} \frac{10.1}{1300}
$$

Subtracting fractions with unlike denominators, e.g. $11 / 4-2 / 3$ as $13 / 12-8 / 12$
Subtracting fractions with unlike denominators, e.g. $11 / 4-2 / 3$ as $13 / 12-8 / 12$
or $15 / 12-8 / 12=7 / 12$

	Year	Mental calculation	Written Calculation	Minimum requirements for ALL children
	Y1	Begin to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Begin to say what three 5 s are by counting in 5 s or what four 2 s are by counting in 2 s , etc. Double numbers to 10		Begin to count in 2 s and 10 s Double numbers to 5 using fingers
	Y2	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Begin to count in 3s. Begin to understand that multiplication is repeated addition and to use arrays (E.g. 3×4 is three rows of 4 dots) Begin to learn the $2 x, 3 x, 5 x$ and $10 x$ tables, seeing these as 'lots of', e.g. 5 lots of 2,6 lots of 2,7 lots of 2 , etc. Double numbers up to 20 Begin to double multiples of 5 to 100 Begin to double two-digit numbers less than 50 with 1 s digits of 1, 2, 34 or 5	To experience: Use partitioning (grid multiplication) to multiply 2 -digit and 3-digit numbers by 'friendly' single digit numbers. n.b. The are no statutory requirements for written calculations to be carried out at Key Stage 1	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Begin to use and understand simple arrays, e.g. 2×4 is two lots of four buns. Double numbers up to 10 Double multiples of 10 to 50
	Y3	Know by heart all the multiplication facts in the $2 x, 3 x, 4 x, 5 x$, $8 x$ and $10 x$ tables Multiply whole numbers by 10 and 100 Recognise that multiplication is commutative Use place value and number facts in mental multiplication. (E.g. 30×5 is 15×10) Partition teen numbers to multiply by a single-digit number. (E.g. 3×14 as 3×10 and 3×4) Double numbers up to 50	Use partitioning (grid multiplication) to multiply 2-digit and 3-digit numbers by 'friendly' single digit numbers.	Know by heart the $2 x, 3 x, 5 x$ and $10 x$ tables Double given tables facts to get others Double numbers up to 25 and multiples of 5 to 50
	Y4	Know by heart all the multiplication facts up to 12×12. Recognise factors up to 12 of two-digit numbers. Multiply whole numbers and one-place decimals by 10, 100, 1000 Multiply multiples of $10,100,1000$ by single digit numbers. $\text { (E.g. } 300 \times 6 \text { or } 4000 \times 8 \text {) }$ Use understanding of place value and number facts in mental multiplication. (E.g. 36×5 is half of 36×10 and $50 \times 60=$ 3000) Partition 2-digit numbers to multiply by a single-digit number mentally. (E.g. 4×24 as 4×20 and 4×4) Multiply near multiples using rounding. (E.g. 33×19 as 33×20 -33) Find doubles to double 100 and beyond using partitioning Begin to double amounts of money. (E.g. $£ 35.60$ doubled $=$ £71.20.)	Use a vertical written method to multiply a one-digit by a 3-digit number (ladder) Use an efficient written method to multiply a 2 -digit number by a number between 10 and 20 by partitioning (grid method)	Know by heart multiplication tables up to 10×10 Multiply whole numbers by 10 and 100 Use grid method to multiply a 2-digit or a 3-digit number by a number up to and including 6

Use knowledge of factors and multiples in multiplication. (E.g. 43×6 is double 43×3, and 28×50 is $1 / 2$ of $28 \times 100=1400$) Use knowledge of place value and rounding in menta multiplication. (E.g. 67×199 as $67 \times 200-67$)
Use doubling and halving as a strategy in mental
multiplication. (E.g. $58 \times 5=$ half of 58×10, and 34×4 is 34 doubled twice)
Partition 2-digit numbers, including decimals, to multiply by a single-digit number mentally. (E.g. 6×27 as 6×20 (120) plus 6 $\times 7$ (42) making 162 or 6.3×7 as 6×7 plus 0.3×7)
Double amounts of money by partitioning. (E.g. $£ 37.45$
doubled $=£ 37$ doubled ($£ 74$) plus 45 p doubled (90 p) $£ 74.90$)
Know by heart all the multiplication facts up to 12×12
Multiply whole numbers and decimals with up to three places by 10,100 or 1000 , e.g. $234 \times 1000=234,000$ and 0.23×1000 = 230)
dentify common factors, common multiples and prime
numbers and use factors in mental multiplication. (E.g. 326×6 is 652×3 which is 1956)
Use place value and number facts in mental multiplication.
(E.g. $40,000 \times 6=24,000$ and $0.03 \times 6=0.18$)

Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20,50$ and 25 (E.g. 28×25 is $1 / 4$ of $28 \times 100=700$)
Use rounding in mental multiplication. (34 x 19 as (20 x 34) 34)

Multiply one and two-place decimals by numbers up to and including 10 using place value and partitioning. (E.g. 3.6×4 is $12+2.4$ or 2.53×3 is $6+1.5+0.09$)
Double decimal numbers with up to 2 places using partitioning e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)

Use short multiplication to multiply a 1-digit number by a number with up to 4 digits
Use long multiplication to multiply 3 digit and 4-digit number by a number between 11 and 20
Choose the most efficient method in any given situation
Find simple percentages of amounts $9 \mathrm{e} . \mathrm{g} .10 \%, 5 \%, 20 \%, 155$ and 50%) Begin to multiply fractions and mixed numbers by whole numbers ≤ 10, e.g. $4 \times 2 / 3=8 / 3=2^{2} / 3$
se short multiplication to multiply a
1-digit number by a number with up to 4 digits
Use long multiplication to multiply a 2digit by a number with up to 4 digits Use short multiplication to multiply a 1-digit number by a number with one or two decimal places, including amounts of money.
Multiply fractions and mixed numbers by whole numbers.
Multiply fractions by proper fractions. Use percentages for comparison and calculate simple percentages.

Know multiplication tables to 11×11
Multiply whole numbers and one-place decimals by 10, 100 and 1000
Use knowledge of factors as aids to mental multiplication. (E.g. 13 $\times 6=$ double 13×3 and 23×5 is $1 / 2$ of 23×10)
Use grid method to multiply numbers with up to 4-digits by onedigit numbers
Use grid method to multiply 2-digit by 2-digit numbers.

Know by heart all the multiplication facts up to 12×12.
Multiply whole numbers and one-and two-place decimals by 10 , 100 and 1000
Use an efficient written method to multiply a one-digit or a teens number by a number with up to 4-digits by partitioning (grid method).
Multiply a one-place decimal number up to 10 by a number ≤ 100 using grid method
Counting in steps ('Clever' counting)
Count in 2 s and 10 s

	Year 5	Year 6
旡	Doubling and halving Double amounts of money using partitioning, e.g. $£ 6.73$ doubled is double $£ 6$ ($£ 12$) plus double 73p (£1.46) Use doubling and halving as a strategy in multiplying by $2,4,8,5$ and 20. E.g. $58 \times 5=1 / 2$ of 58 (29) $\times 10$ (290) Grouping Multiply decimals by $10,100,1000$, e.g. $3.4 \times 100=340$ Use partitioning to multiply friendly 2-digit and 3-digit numbers by single-digit numbers. E.g. 402×6 as 400×6 (2400) and 2×6 (12) Use partitioning to multiply decimal numbers by single-digit numbers, e.g. $4.5 \times 3 \text { as }(4 \times 3)+(4 \times 0.5)$ Multiply using near multiples by rounding, e.g. 32×29 as (32×30) -32 Using number facts Use times tables facts up to 12×12 to multiply multiples of the multiplier, e.g. $4 \times 6=24$ so $40 \times 6=240$ and $400 \times 6=2400$ Know square numbers and cube numbers	Doubling and halving Double decimal numbers with up to 2-places using partitioning, e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46) Use doubling and halving as strategies in mental multiplication Grouping Use partitioning as a strategy in mental multiplication, as appropriate, e.g. 3060×4 as $(3000 \times 4)+(60 \times 4)$ or 8.4×8 as 8×8 (64) and 0.4×8 (3.2) Use factors in mental multiplication, e.g. 421×6 as 421×3 (1263) doubled (2526) or 3.42×5 as half of (3.42×10) Multiply decimal numbers using near multiples by rounding, e.g. 4.3×19 as $4.3 \times 20(86-4.3)$ Using number facts Use times tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to two decimal places, e.g. $6 \times 4=24$ and $0.06 \times 4=0.24$
든		Short multiplication of 2-digit, 3-digit and 4-digit numbers by 1-digit numbers Long multiplication of 2-digit, 3-digit and 4-digit numbers by 2 -digit numbers Short multiplication of decimal numbers using x 100 and $\div 100$, e.g. 13.72×6 as $1372 \times 6 \div 100$ Short multiplication of money, $£ 13.72 \times 6$ Grid multiplication of numbers with up to 2 decimal places by single digit numbers Multiplying proper and improper fractions, e.g. $3 / 4 \mathrm{x}^{2} / 3$ NB Grid multiplication provides a default method for ALL children

	Year	Mental calculation	Written Calculation	Minimum requirements for ALL children
$$	Y1	Begin to count in 2 s , 5 s and 10 s Find half of even numbers to 12 and know it is hard to halve odd numbers Find half of even numbers by sharing Begin to use visual and concrete arrays or 'sets of' to find how many sets of a small number make a larger number.		Begin to count in 2 s and 10 s Find half of even numbers by sharing
	Y2	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Begin to count in 3s Using fingers, say where a given number is in the 2 s , 5 s or 10 s count. (E.g. 8 is the fourth number when I count in twos.) Relate division to grouping. (E.g. how many groups of five in fifteen?) Halve numbers to 20 Begin to halve numbers to 40 and multiples of 10 to 100 Find $1 / 2,1 / 3,1 / 4$ and $3 / 4$ of a quantity of objects and of amounts (whole number answers)	To experience: Perform divisions just above the $10^{\text {th }}$ multiple using the written layout and understanding how to give a remainder as a whole number. n.b. The are no statutory requirements for written calculations to be carried out at Key Stage 1	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Say how many rows in a given array. (E.g. how many rows of 5 in an array of 3×5) Halve numbers to 12 Find $1 / 2$ of amounts
	Y3	Know by heart all the division facts derived from the $2 x, 3 x$, $4 x, 5 x, 8 x$ and $10 x$ tables. Divide whole numbers by 10 or 100 to give whole number answers Recognise that division is not commutative. Use place value and number facts in mental division. (E.g. $84 \div$ 4 is half of 42) Divide larger numbers mentally by subtracting the tenth multiple, including those with remainders. (E.g. $57 \div 3$ is $10+9$ as $10 \times 3=30$ and $9 \times 3=27$) Halve even numbers to 100 , halve odd numbers to 20	Perform divisions just above the $10^{\text {th }}$ multiple using the written layout and understanding how to give a remainder as a whole number. Find unit fractions of quantities and begin to find non-unit fractions of quantities	Know by heart the division facts derived from the $2 x, 3 x, 5 x$ and 10x tables Halve even numbers up to 50 and multiples of ten to 100 Perform divisions within the tables including those with remainders, e.g. $38 \div 5$.
	Y4	Know by heart all the division facts up to $144 \div 12$. Divide whole numbers by 10,100 to give whole number answers or answers with one decimal place Divide multiples of 100 by 1-digit numbers using division facts. (E.g. $3200 \div 8=400)$ Use place value and number facts in mental division. (E.g. $245 \div 20$ is double $245 \div 10$) Divide larger numbers mentally by subtracting the $10^{\text {th }}$ or $20^{\text {th }}$ multiple as appropriate. (E.g. $156 \div 6$ is $20+6$ as $20 \times 6=120$ and $6 \times 6=36$) Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money. (E.g. Half of $£ 52.40=£ 26.20$)	Use a written method to divide a 2-digit or a 3 -digit number by a single-digit number. Give remainders as whole numbers. Begin to reduce fractions to their simplest forms. Find unit and non-unit fractions of larger amounts.	Know by heart all the division facts up to $100 \div 10$. Divide whole numbers by 10 and 100 to give whole number answers or answers with one decimal place Perform divisions just above the $10^{\text {th }}$ multiple using the written layout and understanding how to give a remainder as a whole number. Find unit fractions of amounts

Know by heart all the division facts up to $144 \div 12$
Divide whole numbers by 10, 100, 1000, 10,000 to give whole
number answers or answers with 1, 2 or 3 decimal places
Use doubling and halving as mental division strategies. (E.g. $34 \div 5$ is $34 \div 10) \times 2$)
Use knowledge of multiples and factors, also tests for divisibility , in mental division. (E.g. $246 \div 6$ is $123 \div 3$ and we know that 525 divides by 25 and by 3)
Halve amounts of money by partitioning. (E.g. Half of $£ 75.40=$ half of $€ 75$ (37.50) plus half of 40p (20p) which is $£ 37.70$)
Divide larger numbers mentally by subtracting the $10^{\text {th }}$ or $100^{\text {th }}$
multiple as appropriate. (E.g. $96 \div 6$ is $10+6$, as $10 \times 6=60$ and 6×6
$=36 ; 312 \div 3$ is $100+4$ as $100 \times 3=300$ and $4 \times 3=12$
Reduce fractions to their simplest form

Know by heart all the division facts up to $144 \div 12$.

Divide whole numbers by powers of 10 to give whole number
answers or answers with up to three decimal places
Identify common factors, common multiples and prime numbers and use factors in mental division. (E.g. $438 \div 6$ is $219 \div 3$ which is 73)
Use tests for divisibility to aid mental calculation.
Use doubling and halving as mental division strategies, e.g. to divide by $2,4,8,5,20$ and 25 . (E.g. $628 \div 8$ is halved three times: 314,157 , 78.5)

Divide one and two place decimals by numbers up to and including 10 using place value. (E.g. $2.4 \div 6=0.4$ or $0.65 \div 5=0.13, \mathrm{f} 6.33 \div 3=$ £2.11)
Halve decimal numbers with up to 2 places using partitioning e.g. Half of 36.86 is half of 36 (18) plus half of $0.86(0.43)$

Know and use equivalence between simple fractions, decimals and percentages, including in different contexts. Recognise a given ratio and reduce a given ratio to its lowest terms.

Use short division to divide a number with

 up to 4 digits by a number ≤ 12.Give remainders as whole numbers or as fractions.
Find non-unit fractions of large amounts. Turn improper fractions into mixed numbers and vice versa
Choose the most efficient method in any given situation

Use short division to divide a number with

 up to 4 digits by a 1-digit or a 2-digit numberUse long division to divide 3-digit and 4digit numbers by 'friendly' 2-digit numbers.
Give remainders as whole numbers or as fractions or as decimals
Divide a one-place or a two-place decimal number by a number ≤ 12 using multiples of the divisors.
Divide proper fractions by whole numbers

Know by heart division facts up to $121 \div 11$

Divide whole numbers by 10, 100 or 1000 to give answers with up to one decimal place.
Use doubling and halving as mental division strategies
Use efficient chunking to divide numbers ≤ 1000 by 1-digit numbers. Find unit fractions of 2 and 3-diigt numbers

Know by heart all the division facts up to $144 \div 12$

Divide whole numbers by $10,100,1000$ to give whole number answers or answers with up to two decimal places
Use efficient chunking involving subtracting powers of 10 times the divisor to divide any number of up to 1000 by a number ≤ 12. (E.g. $836 \div 11$ as $836-770(70 \times 11)$ leaving 66 which is 6×11. So that we have $70+6=76$ as the answer)
Divide a one-place decimal by a number ≤ 10 using place value and knowledge of division facts
Counting in steps ('Clever' counting)
Count in 2 s and 10 s

	Year 3	Year 4
	Counting in steps ('Clever' counting) Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10 s by colouring numbers on the 1-100 grid or using a landmarked line Doubling and halving Find half of even numbers to 100 using partitioning. Use halving as a strategy in dividing by 2. E.g. $36 \div 2$ is half of 36 Grouping Recognise that division is not commutative, e.g. $16 \div 8$ does not equal $8 \div 16$ Relate division to multiplications 'with holes in', e.g. $\square \times 5=30$ is the same calculation as $30 \div 5=$? thus we can count in 5 s to find the answer Divide multiples of 10 by single digit numbers, e.g. $240 \div 8=30$ Using number facts Know halves of evèn numbers to 40 Know halves of multiples of 10 to 200 , e.g. half of 170 is 85 Know $2 x, 3 x, 4 x, 5 x, 8 x, 10 x$ division facts Use division facts to find unit and simple non-unit fractions of amounts within the times tables, e.g. $3 / 4$ of 48 is $3 \times(48 \div 4)$	Counting in steps - sequences Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s Using number facts Know times tables up to 12×12 and all related division facts Use division facts to find unit and non-unit fractions of amounts within the times tables, e.g. ${ }^{7} / 8$ of 56 is $7 \times(56 \div 8)$
든	$\begin{array}{ll} \hline \text { Expanded Chunking - Answers in teens } & 14 \mathrm{r} .1 \\ & 4 \longdiv { 5 7 } \\ & -\frac{40(10 \times 4)}{17} \\ & -\frac{16(4 \times 4)}{1} \end{array}$	Further Chunking $\begin{aligned} & 14 \frac{22 r .4}{312} \\ & -\frac{280(20 \times 14)}{32} \\ & -\frac{28(2 \times 14)}{4} \end{aligned}$

	Year 5	Year 6
㕊	Doubling and halving Halve amounts of money using partitioning, e.g. half of $£ 14.84$ as half of $£ 14$ and half of $84 p$ Use doubling and halving as a strategy in dividing by $2,4,8,5$ and 20, e.g. 115 $\div 5$ as double $115(230) \div 10$ Grouping Divide numbers by $10,100,1000$ to obtain decimal answers with up to three places, e.g. $340 \div 100=3.4$. Use the $10^{\text {th }}, 20^{\text {th }}, 30^{\text {th }} \ldots$ multiple of the divisor to divide friendly 2-digit and 3digit numbers by single-digit numbers, e.g. $186 \div 6$ as 30×6 (180) and 1×6 (6) Find unit \& non-unit fractions of large amounts, e.g. $3 / 5$ of 265 is $3 \times(265 \div 5)$ Using number facts Use division facts from the times tables up to 12×12 to divide multiples of powers of ten of the divisor, e.g. $3600 \div 9$ using $36 \div 9$ Know square numbers and cube numbers	Doubling and halving Halve decimal numbers with up to 2-places using partitioning, e.g. half of 36.86 is half of 36 (18) plus half of 0.86 (0.43) Use doubling and halving as strategies in mental division, e.g. $216 \div 4$ is half of 216 (108) and half of 108 (54) Grouping Use $10^{\text {th }}, 20^{\text {th }}, 30^{\text {th }}, \ldots$ or $100^{\text {th }}, 200^{\text {th }}, 300^{\text {th }} \ldots$. multiples of the divisor to divide large numbers, e.g. $378 \div 9$ as $40 \times 9=360$ and $2 \times 9=18$ so the answer is 42 Use tests for divisibility, e.g. 135 divides by 3 as $1+3+5=9$ and 9 is in the $3 x$ table Using number facts Use division facts from the times tables up to 12×12 to divide decimal numbers by single-digit numbers, e.g. $1.17 \div 3$ is $^{1} / 100$ of $117 \div 3$ (0.39)
C	Written version of a mental strategy for 3 -digit $\div 1$ digit numbers Short division of 3-digit and 4-digit numbers by single-digit numbers $\begin{array}{r} 1264 \\ 6 \longdiv { 7 ^ { 1 } 5 ^ { 3 } 8 ^ { 2 } 4 } \end{array}$ Chunking - As Year 4	

